Abstract
This paper proposes a land cover classification method that combines a Gaussian regression model (GRM) with an interval type-2 fuzzy neural network (IT2FNN) model as a classification decision model. Problems such as the increase in the complexity of ground cover, the increase in the heterogeneity of homogeneous regions, and the increase in the difficulty of classification due to the increase in similarity in different regions are overcome. Firstly, the local spatial information between adjacent pixels was introduced into the Gaussian model in image gray space to construct the GRM. Then, the GRM was used as the base model to construct the interval binary fuzzy membership function model and characterize the uncertainty of the classification caused by meticulous land cover data. Thirdly, the upper and lower boundaries of the membership degree of the training samples in all categories and the principle membership degree as input were used to build the IT2FNN model. Finally, in the membership space, the neighborhood relationship was processed again to further overcome the classification difficulties caused by the increased complexity of spatial information to achieve a classification decision. The classical method and proposed method were used to conduct qualitative and quantitative experiments on synthetic and real images of coastal areas, suburban areas, urban areas, and agricultural areas. Compared with the method considering only one spatial neighborhood relationship and the classical classification method without a classification decision model, for images with relatively simple spatial information, the accuracy of the interval type-2 fuzzy neural network Gaussian regression model (IT2FNN_GRM) was improved by 1.3% and 8%, respectively. For images with complex spatial information, the accuracy of the proposed method increased by 5.0% and 16%, respectively. The experimental results prove that the IT2FNN_GRM method effectively suppressed the influence of regional noise in land cover classification, with a fast running speed, high generalization ability, and high classification accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.