Abstract

Current formulations of methylphenidate (MPH) used in treatment of attention-deficit/hyperactivity disorder (ADHD) result in significantly different bioavailability of MPH enantiomers. Daytrana®, a dl-MPH transdermal patch system, produces higher levels of l-MPH than when dl-MPH is administered orally (e.g., Ritalin®). One potential limitation of increased l-MPH was indicated in a preclinical study showing l-MPH may attenuate effects of d-MPH. The objective of the study was to investigate the interactive effects of MPH enantiomers by (1) assessing drug effects via a preclinical model of "impulsivity" and (2) performing a quantitative dose equivalence analysis of MPH enantiomer interactions. Sprague-Dawley rats were trained to emit either of two responses, one producing an immediate food pellet, the other producing four pellets delivered at increasing delays (0, 8, and 32 s). The percent selection of the larger food amount was graphed as a function of delay with the area under the curve (AUC) assessed. Increases in AUC are consistent with decreases in "impulsivity" (i.e., selection of the smaller, immediate over the larger, delayed reinforcer). Systemic administration of dl-MPH and d-MPH dose-dependently increased AUC, while l-MPH, morphine, and pentobarbital did not alter AUC. An analysis based upon dose equivalence indicated that dl-MPH produced additive effects that were not different from that predicted from effects of the enantiomers administered alone. The present results indicate pharmacologically selective effects in that only drugs prescribed for the treatment of ADHD symptoms decreased a measure of "impulsivity" and that l-MPH likely does not attenuate or enhance the effects of d-MPH in the current delay-discounting task.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.