Abstract

Methylphenidate has been used as an effective treatment for attention deficit hyperactivity disorder (ADHD). Methylphenidate (MPH) blocks dopamine and norepinephrine transporters causing an increase in extracellular levels. The use of psychomotor stimulants continues to rise due to both the treatment of ADHD and illicit abuse. Methylphenidate sensitization mechanism has still poor knowledge. Neuronal calcium sensor 1 was identified as a dopaminergic receptor interacting protein. When expressed in mammalian cells, neuronal calcium sensor 1 attenuates dopamine-induced D2 receptor internalization by a mechanism that involves a reduction in D2 receptor phosphorylation. Neuronal calcium sensor 1 appears to play a pivotal role in regulating D2 receptor function, it will be important to determine if there are alterations in neuronal calcium sensor 1 in neuropathologies associated with deregulation in dopaminergic signaling. Then, we investigated if methylphenidate could alter neuronal calcium sensor 1 expression in five brain regions (striatum, hippocampus, prefrontal cortex, cortex and cerebellum) in young and adult rats. These regions were chosen because some are located in brain circuits related with attention deficit hyperactivity disorder. Our results showed changes in neuronal calcium sensor 1 expression in hippocampus, prefrontal cortex and cerebellum mainly in adult rats. The demonstration that methylphenidate induces changes in neuronal calcium sensor 1 levels in rat brain may help to understand sensitization mechanisms as well as methylphenidate therapeutic effects to improve attention deficit hyperactivity disorder symptoms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.