Abstract
BackgroundIn methylome-wide association studies (MWAS) there are many possible differences between cases and controls (e.g. related to life style, diet, and medication use) that may affect the methylome and produce false positive findings. An effective approach to control for these confounders is to first capture the major sources of variation in the methylation data and then regress out these components in the association analyses. This approach is, however, computationally very challenging due to the extremely large number of methylation sites in the human genome.ResultWe introduce MethylPCA that is specifically designed to control for potential confounders in studies where the number of methylation sites is extremely large. MethylPCA offers a complete and flexible data analysis including 1) an adaptive method that performs data reduction prior to PCA by empirically combining methylation data of neighboring sites, 2) an efficient algorithm that performs a principal component analysis (PCA) on the ultra high-dimensional data matrix, and 3) association tests. To accomplish this MethylPCA allows for parallel execution of tasks, uses C++ for CPU and I/O intensive calculations, and stores intermediate results to avoid computing the same statistics multiple times or keeping results in memory. Through simulations and an analysis of a real whole methylome MBD-seq study of 1,500 subjects we show that MethylPCA effectively controls for potential confounders.ConclusionsMethylPCA provides users a convenient tool to perform MWAS. The software effectively handles the challenge in memory and speed to perform tasks that would be impossible to accomplish using existing software when millions of sites are interrogated with the sample sizes required for MWAS.
Highlights
In methylome-wide association studies (MWAS) there are many possible differences between cases and controls that may affect the methylome and produce false positive findings
The software effectively handles the challenge in memory and speed to perform tasks that would be impossible to accomplish using existing software when millions of sites are interrogated with the sample sizes required for MWAS
Simulation study In this simulation study, we illustrate the effectiveness of Principal component analysis (PCA) in correcting confounding factors in the association test
Summary
In methylome-wide association studies (MWAS) there are many possible differences between cases and controls (e.g. related to life style, diet, and medication use) that may affect the methylome and produce false positive findings. An effective approach to control for these confounders is to first capture the major sources of variation in the methylation data and regress out these components in the association analyses. This approach is, computationally very challenging due to the extremely large number of methylation sites in the human genome. Because detailed prior biological knowledge is lacking, it will be critical to perform methylome-wide association studies (MWAS) to detect disease relevant sites [10,11]. The most comprehensive approach uses next-generation sequencing (NGS) to interrogate DNA methylation on a genome-wide basis after bisulfite conversion of unmethylated cytosines. Examples are the commercially available Infinium system from Illumina [15] that interrogates >450,000 loci or genomewide tiling arrays and the 45 million probe array set from Affymetrix [16] that offers more comprehensive coverage of the methylome
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.