Abstract

In a previous study, we pointed out that the neurotoxic action evoked by methylmercury (MeHg), a potent environmental pollutant responsible for fatal food poisoning, is associated with alterations of cellular excitability by irreversible blockade of sodium and calcium currents. Here, we investigated the MeHg effects on synaptic transmission and neuronal plasticity using extracellular field recording in CA1 area of rat hippocampal slices. MeHg caused a fast and drastic depression of evoked field excitatory postsynaptic potentials (fEPSPs) in a concentration-dependent manner with an IC50 of 25.7μM. This depression was partially caused by the irreversible reduction of axon recruitment deduced from the decrement of the fiber volley (FV) amplitude. Nevertheless, this MeHg-induced synaptic depression represents a true reduction of synaptic efficacy, as judged by input/output curves. In addition, a reduction on presynaptic release of glutamate was detected with the paradigm of paired-pulse facilitation during MeHg application. Moreover, MeHg also reduced population spike (PS) ampxlitude, and this effect was more prominent when the PS was evoked by ortodromic stimulation than by antidromic stimulation. Interestingly, despite these strong effects of MeHg on synaptic transmission and excitability, this compound did not modify the induction of long-term synaptic potentiation (LTP). The effects described here for MeHg were irreversible or very slowly reversible after drug wash-out. In summary, the blockade of sodium and calcium channels by MeHg affects synaptic transmission and cellular excitability but not synaptic plasticity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.