Abstract

Neurotoxic effects of methylmercury were investigated in vitro in primary cultures of human neurons and astrocytes isolated from human fetal brain and in the human neuroblastoma cell line SH-SY5Y. The protection provided by agents with antioxidant properties was tested in these cultures to examine the oxidative stress mechanism of methylmercury poisoning. After 24 h of exposure to methylmercury, LC 50 values were 6.5, 8.1 and 6.9 μM for human neurons, astrocytes and neuroblastoma cells, respectively, and the degree of cell damage increased at longer exposure times. Depletion of the cellular pool of reduced glutathione (GSH) by treatment with buthionine sulfoximine potentiated methylmercury cytotoxicity in all three cell types; neuroblastoma cells were the most sensitive. Addition of GSH extracellularly blocked methylmercury neurotoxicity in all cell types. The major beneficial effect of GSH could be attributed to its capacity to form conjugates with methylmercury, which reduces the availability of these organometallic molecules to the cells and facilitates their efflux. Cysteine protected astrocytes and neuroblastoma cells from methylmercury neurotoxicity, while selenite, Vitamin E and catalase produced some minor protective effects in three cell types, particularly in neurons. The present study showed that the human neural cells tested had differential responses to methylmercury: astrocytes were resistant to methylmercury neurotoxicity and neurons were more most responsive to protection afforded by antioxidants among the three cell types.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call