Abstract

Methylmercury (MeHg) is a neurotoxin capable of causing severe damage to the CNS, especially in the developing fetus. Glia in the CNS release a number of cytokines that are important for proper CNS development and function. We reported earlier that MeHg could induce interleukin-6 (IL-6) release in primary mouse glia. This finding is significant considering previous reports indicating that sustained IL-6 exposure could be detrimental to cerebellar granule neurons, one of the major cellular targets of MeHg cytotoxicity. By using pharmacological antagonists against phophatidycholine- and phosphoinositol-specific phospholipase C, the current study indicated that phospholipase C activity was necessary for MeHg-induced IL-6 release. Results from pharmacological antagonists further suggested that the calcium signaling initiated by phospholipase C appeared essential for this event. In contrast, protein kinase C activity did not appear to be important. Even though mitogen-activated protein kinases were important for IL-6 release in some experimental systems, these enzymes did not appear to be required for MeHg-induced IL-6 release in glia. Based on these data and those reported by us and others, there is a possibility that MeHg-induced phospholipase C activation initiates a calcium signaling that causes phospholipase A2 activation. This, in turn, leads to arachidonic acid and lysophosphatidyl choline generation, both of which are potent inducers for IL-6 release.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call