Abstract

Estuaries are important sites for mercury (Hg) methylation, with sulfate-reducing bacteria (SRB) thought to be the main Hg methylators. Distributions of total mercury (THg) and methylmercury (MeHg) in mangrove sediment and sediment core from Jiulong River Estuary Provincial Mangrove Reserve, China were determined and the possible mechanisms of Hg methylation and their controlling factors in mangrove sediments were investigated. Microbiological and geochemical parameters were also determined. Results showed that SRB constitute a small fraction of total bacteria (TB) in both surface sediments and the profile of sediments. The content of THg, MeHg, TB, and SRB were (350 ± 150) ng/g, (0.47 ± 0.11) ng/g, (1.4 ×10 11 ± 4.1 × 10 9) cfu/g dry weight (dw), and (5.0 × 10 6 ± 2.7 × 10 6) cfu/g dw in surficial sediments, respectively, and (240 ± 24) ng/g, (0.30 ± 0.15) ng/g, (1.9 × 10 11 ± 4.2 × 10 10) cfu/g dw, and (1.3 × 10 6 ± 2.0 × 10 6) cfu/g dw in sediment core, respectively. Results showed that THg, MeHg, TB, MeHg/THg, salinity and total sulfur (TS) increased with depth, but total organic matter (TOM), SRB, and pH decreased with depth. Concentrations of MeHg in sediments showed significant positive correlation with THg, salinity, TS, and MeHg/THg, and significant negative correlation with SRB, TOM, and pH. It was concluded that other microbes, rather than SRB, may also act as main Hg methylators in mangrove sediments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call