Abstract

The synthesis of methylenimine and cyanomethanimine from ion irradiation of N2-CH4 ice was studied, in an attempt to simulate the role of medium mass cosmic rays and energetic solar particles in the processing of nitrogen-rich ices on cold astrophysical environments, such as those in the outer region of the solar system (e.g. Pluto, Charon, Triton, Makemake and Titan). The N2-CH4 (90:10) ice mixture was irradiated at 9 K by 38.4 MeV 40Ca9+ (0.96 MeV/u) at the GANIL facility (Caen/Fance). The evolution of the samples was monitored using in-situ Fourier transform infrared spectroscopy (FTIR). The results indicate the formation of CH2NH and CH2NCN, which are considered species of interest in prebiotic chemistry. Other species produced by radiolysis were HCN, HNC, hydrocarbons and nitriles. Direct comparison of the laboratory spectrum from the mixture of reaction products provides an efficient way to focus on the identification of chemical synthesis routes for the production of molecules important in the development of life that are consistent with the chemical inventory and physical conditions on frozen moons and cold objects in the outer solar system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.