Abstract

Several carbon-supported chromium oxide catalysts were prepared by varying the textural and surface properties of the support. Reactor experiments were carried out in a fixed bed reactor at a temperature ranging from 100 to 400 °C and a space velocity of 12,000 h −1 at atmospheric pressure. Our reaction conditions are limited below 400 °C to prevent burn-off of support. The support and catalyst characteristics, including surface area, acidity, surface composition, oxygen pick-up and oxidation state of chromium cation, were measured and compared. N 2 adsorption studies demonstrated that the oxidation process of the support increased the micropore volume and the mesopore surface area. Oxidizing of the original carbon led to an increase in the concentration of surface oxygen groups and a change in their distribution as determined by TPD. XPS results showed that the quantities of carboxyl groups increased with oxidative treatment, indicating that the acidic properties of the carbon were enhanced, in agreement with pH analysis and TPD results. XPS results of catalysts showed that the creation of an acidic surface having less thermally stable carboxyl group with oxidative treatment of activated carbon helped the high valence of chromium ion on the catalyst. The oxygen chemisorption experiment showed that high valence of chromium cations on activated carbon provided more adsorption sites and therefore led to the higher activity of this catalyst. Catalytic results indicated that carbon-supported chromium oxide catalysts were effective for complete oxidation of CH 2Cl 2. Oxidative treatment of the support increased its acidity and therefore led to improved activity by highly dispersed Cr 6+ species on catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.