Abstract

X chromosome inactivation is controlled by the cis-acting X-inactivation centre (Xic). In addition to initiating inactivation, Xic, which includes the XIST: gene, is involved in both a counting process that senses the number of X chromosomes and the choice of X chromosome to inactivate. Controlling elements lying 3' to XIST: include the DXPas34 locus. Deletion of DXPas34 in undifferentiated embryonic stem (ES) cells eliminates expression of both XIST: and the antisense transcript TSIX:, thought to initiate from a CpG island lying close to, but telomeric to, the DXPas34 locus itself. Deletion of DXPas34 leads to non-random inactivation on ES cell differentiation and disrupts imprinted X-inactivation in vivo. In order to investigate the role of methylation at DXPas34 in the initial steps of X-inactivation, we studied its methylation status during pre- and post-implantation embryonic development and ES cell differentiation, using the bisulphite sequencing technique. Analysis of the methylation status of both the DXPas34 locus and the associated downstream CpG island shows that extensive hypermethylation of the DXPas34 locus is a relatively late event in differentiation and embryogenesis. We conclude that methylation of DXPas34 cannot be the X chromosome imprint, nor can it be involved in the parent-of-origin effects associated with deletion of the DXPas34 locus and the neighbouring CpG island.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.