Abstract

By using methylation-sensitive representational difference analysis, we identified protocadherin 10 (PCDH10), a gene that encodes a protocadherin and is silenced in a tumor-specific manner. We analyzed its epigenetic inactivation, biological effects, and prognostic significance in gastric cancer. Methylation status was evaluated by combined bisulfite restriction analysis and bisulfite sequencing. The effects of PCDH10 re-expression were determined in growth, apoptosis, proliferation, and invasion assays. PCDH10 target genes were identified by complementary DNA microarray analysis. PCDH10 was silenced or down-regulated in 94% (16 of 17) of gastric cancer cell lines; expression levels were restored by exposure to demethylating agents. Re-expression of PCDH10 in MKN45 gastric cancer cells reduced colony formation in vitro and tumor growth in mice; it also inhibited cell proliferation (P < .01), induced cell apoptosis (P < .001), and repressed cell invasion (P < .05), up-regulating the pro-apoptosis genes Fas, Caspase 8, Jun, and CDKN1A; the antiproliferation gene FGFR; and the anti-invasion gene HTATIP2. PCDH10 methylation was detected in 82% (85 of 104) of gastric tumors compared with 37% (38 of 104) of paired nontumor tissues (P < .0001). In the latter, PCDH10 methylation was higher in precancerous lesions (27 of 45; 60%) than in chronic gastritis samples (11 of 59; 19%) (P < .0001). After a median follow-up period of 16.8 months, multivariate analysis revealed that patients with PCDH10 methylation in adjacent nontumor areas had a significant decrease in overall survival. Kaplan-Meier survival curves showed that PCDH10 methylation was associated significantly with shortened survival in stage I-III gastric cancer patients. PCDH10 is a gastric tumor suppressor; its methylation at early stages of gastric carcinogenesis is an independent prognostic factor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.