Abstract

The methylation pattern of a 248-base pair proximal transcribed region (rho248) of the avian embryonic rho-globin gene was found to correlate inversely with stage-specific expression in avian erythroid cells. In vitro methylation of the rho248 segment alone (in the absence of promoter methylation) resulted in a 5-fold inhibition of transcription in a transient transfection assay in primary erythroid cells in which the transfected gene is packaged into nucleosomal chromatin. This effect was observed if the rho248 segment was positioned adjacent to the promoter but not when it was located 2.7 kilobases downstream. Fully methylated but not unmethylated rho248 formed a novel cell type-specific methyl cytosine-binding protein complex (MeCPC) that contained methyl binding domain protein-2 (MBD-2) and histone deacetylase 1 proteins but differed from MeCP-1. The histone deacetylase inhibitor trichostatin A failed to relieve methylation-mediated repression of transcription from the rho-gene promoter, supporting the notion of the dominance of methylation over histone deacetylation in silencing through CpG-rich sequences at this locus. These data demonstrate that site-specific methylation of a vertebrate gene 5'-transcribed region alone at the exact CpGs that are methylated in vivo can suppress transcription in homologous primary cells and facilitate binding to a cell type-specific MeCPC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.