Abstract
BackgroundGestational diabetes mellitus (GDM) is defined as any degree of glucose intolerance during pregnancy, and will lead to high risk of diabetes even after pregnancy. Hypoxia‐inducible factor (HIF) family proteins are transcriptional factors that are highly correlated with methylation, which might be involved in the regulation of GDM.MethodsBaseline clinical characteristics of the GDM patients and healthy women were analyzed. Omental tissue from GDM patients and control groups were collected and detected for the expression levels of HIF1A, HIF2A, and HIF3A. The CpG islands of HIF3A promoter were predicted by “methprimer” software, and the methylation level of CpG islands was detected by bisulfite sequencing PCR.Results HIF3A was downregulated in the omental tissue from GDM patients, whereas HIF1A and HIF2A were not affected. Furthermore, HIF3A expression was positively correlated with levels of estrogen receptor α (ESR1) and solute carrier family 2 member 4 (SLC2A4). Moreover, CpG islands of HIF3A promoter were highly methylated in GDM patients. In addition, methylation level of CpG islands could be upregulated by Estradiol (E2) treatment, since high dose of E2 reduced HIF3A mRNA expression in 3T3‐L1 adipocytes.ConclusionOur findings demonstrate that the expression level of HIF3A, but not HIF1A or HIF2A, is downregulated in GDM patients. The methylation status of HIF3A promoter region is highly correlated with GDM, which could be a novel therapeutic target for GDM treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.