Abstract

Cytosine residues at CpG dinucleotides can be methylated by endogenous methyltransferases in mammalian cells. The resulting 5-methylcytosine base may undergo spontaneous deamination to form thymine causing G/C to A/T transition mutations. Methylated CpGs also can form preferential targets for environmental mutagens and carcinogens. The Big Blue® transgenic mouse has been used to investigate tissue and organ specificity of mutations and to deduce mutational mechanisms in a mammal in vivo. The transgenic mouse contains approximately 40 concatenated lambda-like shuttle vectors, each of which contains one copy of an Escherichia coli lacI gene as a mutational target. lacI mutations in lambda transgenic mice are characterized by a high frequency of spontaneous mutations targeted to CpG dinucleotides suggesting an important contribution from methylation-mediated events. To study the methylation status of CpGs in the lacI gene, we have mapped the distribution of 5-methylcytosines along the DNA-binding domain and flanking sequences of the lacI gene of transgenic mice. We analyzed genomic DNA from various tissues including thymus, liver, testis, and DNA derived from two thymic lymphomas. The mouse genomic DNAs and methylated and unmethylated control DNAs were chemically cleaved, then the positions of 5-methylcytosines were mapped by ligation-mediated PCR which can be used to distinguish methylated from unmethylated cytosines. Our data show that most CpG dinucleotides in the DNA binding domain of the lacI gene are methylated to a high extent (>98%) in all tissues tested; only a few sites are partially (70–90%) methylated. We conclude that tissue-specific methylation is unlikely to contribute significantly to tissue-specific mutational patterns, and that the occurrence of common mutation sites at specific CpGs in the lacI gene is not related to selective methylation of only these sequences. The data confirm previous suggestions that the high frequency of CpG mutations in lacI transgenes is related to the presence of 5-methylcytosine bases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.