Abstract
The growth arrest DNA damage-inducible gene (GADD45) family, which is composed of GADD45A, GADD45B, and GADD45G, may play similar but not identical roles in tumorigenesis. Genetic changes associated with or responsible for their dysregulation are in general uncommon. This study was to detect the role of GADD45 gene family in gastric cardia adenocarcinoma (GCA) and the relationship of GADD45A and GADD45G methylation to a series of pathological parameters in a large GCA sample, in order to elucidate more information on the role of GADD45 gene family with regard to the pathogenesis of GCA. Decreased mRNA and protein expression of GADD45A and GADD45G but not GADD45B were found in 138 GCA tumor tissues. The methylation frequency of 5' 4 CpG region located in distal promoter of GADD45A and proximal promoter of GADD45G in GCA tumor tissues was significantly higher than that in corresponding normal tissues. The expression levels of GADD45A and GADD45G were inversely correlated with methylation levels. GADD45B expression was not correlated with GCA patients survival, while GADD45A and GADD45G methylation status and protein expression were independently associated with GCA patients' survival. These results suggest that GADD45A and GADD45G gene may act as functional tumor suppressor but being frequently inactivated epigenetically in patients with GCA. Silencing of GADD45A and GADD45G, negative regulator of cell growth, is most likely responsible for conferring a selective growth advantage during GCA evolution and outgrowth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.