Abstract

We identified transmembrane protease, serine 4 (TMPRSS4) as a putative, druggable target by screening surgically resected samples from 90 Japanese non-small-cell lung cancer (NSCLC) patients using cDNA microarray. TMPRSS4 has two druggable domains and was upregulated in 94.5% of the lung cancer specimens. Interestingly, we found that TMPRSS4 expression was associated with tissue factor pathway inhibitor 2 (TFPI-2) expression in these clinical samples. In contrast to TMPRSS4, TFPI-2 expression was downregulated in NSCLC samples. The in vitro induction of TFPI-2 in lung cancer cell lines decreased the expression of TMPRSS4mRNA levels. Reporter assay showed that TFPI-2 inhibited transcription of TMPRSS4, although partially. Knockdown of TMPRSS4 reduced the proliferation rate in several lung cancer cell lines. When lung cancer cell lines were treated with 5-aza-2′-deoxycytidine or trichostatin A, their proliferation rate and TMPRSS4mRNA expression levels were also reduced through the upregulation of TFPI-2 by decreasing its methylation in vitro. The TFPI-2 methylation level in the low TMPRSS4 group appeared to be significantly low in NSCLC samples (P = 0.02). We found a novel molecular mechanism that TFPI-2 negatively regulates cell growth by inhibiting transcription of TMPRSS4. We suggest that TMPRSS4 is upregulated by silencing of TFPI-2 through aberrant DNA methylation and contributes to oncogenesis in NSCLC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call