Abstract

BackgroundEpigenetic silencing of tumor suppressor genes associated with promoter methylation is considered to be a hallmark of oncogenesis. RASSF1A is a candidate tumor suppressor gene which was found to be inactivated in many human cancers. Although we have had a prelimilary cognition about the function of RASSF1A, the exact mechanisms about how RASSF1A functions in human cancers were largely unknown. Moreover, the effect of mutated K-Ras gene on the function of RASSF1A is lacking. The aim of this study was to investigate the expression profile and methylation status of RASSF1A gene, and to explore its concrete mechanisms as a tumor suppressor gene in Nasopharyngeal Carcinoma.MethodsWe examined the expression profile and methylation status of RASSF1A in two NPC cell lines, 38 primary nasopharyngeal carcinoma and 14 normal nasopharyngeal epithelia using RT-PCR and methylated specific PCR(MSP) respectively. 5-aza-dC was then added to confirm the correlation between hypermethylation status and inactivation of RASSF1A. The NPC cell line CNE-2 was transfected with exogenous pcDNA3.1(+)/RASSF1A plasmid in the presence or absence of mutated K-Ras by liposome-mediated gene transfer method. Flow cytometry was used to examine the effect of RASSF1A on cell cycle modulation and apoptosis. Meanwhile, trypan blue dye exclusion assays was used to detect the effect of RASSF1A transfection alone and the co-transfection of RASSF1A and K-Ras on cell proliferation.ResultsPromoter methylation of RASSF1A could be detected in 71.05% (27/38) of NPC samples, but not in normal nasopharyngeal epithelia. RASSF1A expression in NPC primary tumors was lower than that in normal nasopharyngeal epithelial (p < 0.01). Expression of RASSF1A was down-regulated in two NPC cell lines. Loss of RASSF1A expression was greatly restored by the methyltransferase inhibitor 5-aza-dC in CNE-2. Ectopic expression of RASSF1A in CNE-2 could increase the percentage of G0/G1 phase cells (p < 0.01), inhibit cell proliferation and induce apoptosis (p < 0.001). Moreover, activated K-Ras could enhance the growth inhibition effect induced by RASSF1A in CNE-2 cells (p < 0.01).ConclusionExpression of RASSF1A is down-regulated in NPC due to the hypermethylation of promoter. Exogenous expression of RASSF1A is able to induce growth inhibition effect and apoptosis in tumor cell lines, and this effect could be enhanced by activated K-Ras.

Highlights

  • Epigenetic silencing of tumor suppressor genes associated with promoter methylation is considered to be a hallmark of oncogenesis

  • Hypermethylation of RASSF1A in Nasopharyngeal carcinoma (NPC) cell lines, primary tumorsand normal nasopharyngeal epithelia Promoter hypermethylation of RASSF1A could be detected in 71.05% (27/38) of the primary NPC tumors but not in the normal NP epithelia (Figure 2a)

  • Our methylated specific PCR (MSP) analysis showed that RASSF1A methylation was frequent in NPC, as the RASSF1A promoter region was subjected to methylation in 71.05% of the primary tumors, the two NPC cell lines that we examined were both partial methylation

Read more

Summary

Introduction

Epigenetic silencing of tumor suppressor genes associated with promoter methylation is considered to be a hallmark of oncogenesis. RASSF1A is a candidate tumor suppressor gene which was found to be inactivated in many human cancers. The aim of this study was to investigate the expression profile and methylation status of RASSF1A gene, and to explore its concrete mechanisms as a tumor suppressor gene in Nasopharyngeal Carcinoma. Several studies [3,4] showed that silence of tumor suppressor genes by epigenetic modification is a major mechanism for inactivation of cancerrelated genes in the pathogenesis of human cancers. Methylation of the CpG islands of DNA promoter is the most important and common epigenetic mechanism leading to gene silence[6]. Identification of genes targeted by hypermethylation may provide insight into NPC tumorigenesis

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.