Abstract
We show that unsymmetric BODIPY compounds with one, two, and three methyl groups can be synthesized easily and efficiently by the unsymmetric reaction method. Their steady state and time-resolved fluorescence properties are examined in solvents of different polarity. These compounds show high fluorescence quantum yields (0.87 to 1.0), long fluorescence lifetimes (5.89 to 7.40ns), and small Stokes shift (199 to 443cm-1). The methyl substitution exhibits influence on the UV-Vis absorption and fluorescence properties, such as the blue shift in emission and absorption spectra. It is the number rather than the position of methyls that play major roles. Except for 3M-BDP, the increase in the number of methyls on BODIPY core leads to the increase in both fluorescence quantum yield and radiative rate constant, but causes the decrease in fluorescence lifetime. H-bonding solvents increase both the fluorescence lifetime and quantum yields. The methylated BODIPYs show the ability to generate singlet oxygen (1Δg) which is evidenced by near-IR luminescence and DPBF chemical trapping techniques. The formation quantum yield of singlet oxygen (1Δg) for the compounds is up to 0.15 ± 0.05.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.