Abstract

Dialkylphosphates (DAPs), metabolites of organophosphate (OP) pesticides, are widely distributed in the environment and are often used as biomarkers of OP exposure. Recent reports indicate that DAPs may be genotoxic, both in vitro and in vivo. We have examined the genotoxicity of the methylated DAPs dimethyldithiophosphate (DMDTP) and dimethylphosphate (DMTP) and the ethylated DAPs diethyldithiophosphate (DEDTP) and diethylphosphate (DETP), in comparison with their parental compounds, malathion and terbufos, respectively, in bone marrow polychromatic erythrocytes (PCE) of male and female Balb/c mice. We also compared DNA damage (comet assay) induced by DMDTP and dimethyl phosphate (DMP) in human cell lines. Both DMDTP and DMP caused DNA damage in peripheral blood mononuclear cells, HeLa cells, and the hepatic cell lines HepG2 and WRL-68. In the in vivo micronucleus assay, methylated and ethylated DAPs increased micronucleated PCE cells in both male and female mice. Female mice were more susceptible to DNA damage. In comparison to their parental compounds, methylated DAPs, particularly DMTP, were more genotoxic than malathion; DEDTP, DETP, and terbufos were similar in potency. These results suggest that DAPs may contribute to DNA damage associated with OP pesticide exposure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call