Abstract

A turn-on fluorescent sensor based on CdTe quantum dots (QDs) is designed for highly sensitive and selective ascorbic acid (AA) detection. CdTe shows a strong emission centered at 578nm. When assembled with poly(sodium 4-styrenesulfonate) (PSS) and methyl viologen (Mv2+) through electrostatic interaction, the emission is found to be effectively quenched. In the presence of AA, Mv2+ is reduced to Mv+, making the fluorescence of CdTe QDs restored. Under the optimal conditions, the proposed AA sensing method shows a linear proportional response from 0.8 µM to 20 µM, with the detecting limit as low as 50 nM. The developed method was successfully applied in the analysis of AA in human serum samples and cell lysates with satisfactory results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.