Abstract

We have quantum chemically investigated how methyl substituents affect the stability of alkyl radicals MemH3−mC⋅ and the corresponding MemH3−mC−X bonds (X = H, CH3, OH; m = 0 – 3) using density functional theory at M06‐2X/TZ2P. The state‐of‐the‐art in physical organic chemistry is that alkyl radicals are stabilized upon an increase in their degree of substitution from methyl<primary<secondary<tertiary, and that this is the underlying cause for the decrease in C−H bond strength along this series. Here, we provide evidence that falsifies this model and show that, on the contrary, the MemH3−mC⋅ radical is destabilized with increasing substitution. The reason that the corresponding C−H bond nevertheless becomes weaker is that substitution destabilizes the sterically more congested MemH3−mC−H molecule even more.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.