Abstract

Methyl linderone (ML), a cyclo-pentenedione, was isolated from the fruit of Lindera erythrocarpa Makino (family Lauraceae). This plant has well-known anti-inflammatory effects; however, the anti-cancer effects of ML have not yet been reported. Thus, in the present study we investigated the effects of ML on the metastasis of human breast cancer cells. We used 12-O-tetradecanoyl phorbol-13-acetate (TPA)-stimulated MCF-7 cells as the cell model to study the effects of ML on invasion and migration. ML was found to reduce the invasion and migration rate of TPA-stimulated MCF-7 cells. Moreover, it inhibited two metastasis-related factors, matrix metalloproteinase-9 (MMP-9) and interleukin-8 (IL-8), at the mRNA and protein expression levels, in TPA-treated MCF-7 cells. The mechanism by which ML exerted these effects was through the inhibition of translocation of activator protein-1 (AP-1) and signal transducer and activator of transcription-3 (STAT3), mediated via phosphorylation of extracellular signal-regulated kinase (ERK). Taken together, our findings indicated that ML attenuated the TPA-stimulated invasion and migration of MCF-7 cells by suppressing the phosphorylation of ERK and its downstream factors, AP-1 and STAT3. Therefore, ML is a potential agent for the treatment of breast cancer metastasis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call