Abstract

Preharvest applications of methyl jasmonate (MeJA) have been shown to improve post-harvest fruit quality in strawberry fruit. However, the effectiveness of consecutive field applications at different phenological stages on the reinforcement of the antioxidant capacity remains to be analyzed. To determine the best antioxidant response of strawberry (Fragaria × ananassa ‘Camarosa’) fruit to different numbers and timing of MeJA applications, we performed three differential preharvest treatments (M1, M2, and M3) consisted of successive field applications of 250 μmol L–1 MeJA at flowering (M3), large green (M2 and M3), and ripe fruit stages (M1, M2, and M3). Then, we analyzed their effects on fruit quality parameters [firmness, skin color, soluble solids content/titratable acidity (SSC/TA) ratio, fruit weight at harvest, and weight loss] along with anthocyanin and proanthocyanidin (PA) accumulation; the antioxidant-related enzymatic activity of catalase (CAT), guaiacol peroxidase (POX), and ascorbate peroxidase (APX); the total flavonoid and phenolic contents, antioxidant capacity, and ascorbic acid content (AAC) during post-harvest storage (0, 24, 48, and 72 h). We also evaluated the effect on lignin, total carbon and nitrogen (%C and N), lipid peroxidation, and C and N isotopes signatures on fruits. Remarkably, the results indicated that MeJA treatment increases anthocyanin and PA contents as well as CAT activity in post-harvest storage, depending on the number of preharvest MeJA applications. Also, M3 fruit showed a higher AAC compared to control at 48 and 72 h. Noticeably, the anthocyanin content and CAT activity were more elevated in M3 treatment comparing with control at all post-harvest times. In turn, APX activity was found higher on all MeJA-treated fruit independent of the number of applications. Unlike, MeJA applications did not generate variations on fruit firmness and weight, lignin contents,% C and N, and in lipid peroxidation and water/nitrogen use efficiency according to C and N isotope discrimination. Finally, we concluded that an increasing number of MeJA applications (M3 treatment) improve anthocyanin, PA, AAC, and CAT activity that could play an essential role against reactive oxygen species, which cause stress that affects fruits during post-harvest storage.

Highlights

  • Strawberry (Fragaria × ananassa Duch.), a Rosaceae family member, is one of the most popular fruits grown worldwide due to its organoleptic attributes and abundance in nutrients, vitamins, and minerals (Giampieri et al, 2012; Bertioli, 2019)

  • The solids content (SSC)/titratable acidity (TA) ratio gradually decreased during post-harvest in all treatments, but higher values of SCC/TA ratio were found in methyl jasmonate (MeJA)-treated fruits at 0 (M2), 24 (M3), and 48 h (M2) compared with control, which means that MeJA treatments impact this important parameter in strawberry flavor by increasing SSC and reducing TA values (Table 1 and Supplementary Table 2)

  • We report a significant impact of different preharvest MeJA treatments on different fruit quality parameters such as weight loss, soluble solids content/titratable acidity (SSC/TA) ratio, skin color, total anthocyanin (AC), total proanthocyanidin (PA) and ascorbic acid contents (AAC) accumulation, and antioxidant enzymatic activities of catalase (CAT) and ascorbate peroxidase (APX) during post-harvest storage (Figure 7)

Read more

Summary

Introduction

Strawberry (Fragaria × ananassa Duch.), a Rosaceae family member, is one of the most popular fruits grown worldwide due to its organoleptic attributes and abundance in nutrients, vitamins, and minerals (Giampieri et al, 2012; Bertioli, 2019). Since the global living standard increases, the improvement of fruit quality at harvest and to maintain it during storage is a current challenge driven by consumers. In this line, scientific research has been focused on finding preharvest treatments with natural compounds to replace chemical post-harvest treatments due to legal restrictions and the negative perception by consumers (García-Pastor et al, 2020). The improvement of strawberry fruit quality by preharvest management involves considering physicochemical and functional aspects during the fruit development throughout the season in the field

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.