Abstract
Amide bond formation and transition metal-catalyzed cross-coupling are two of the most frequently used chemical reactions in organic synthesis. Recently, an overlap between these two reaction families was identified when Pd and Ni catalysts were demonstrated to cleave the strong C–O bond present in esters via oxidative addition. When simple methyl and ethyl esters are used, this transformation provides a powerful alternative to classical amide bond formations, which commonly feature stoichiometric activating agents. Thus far, few redox-active catalysts have been demonstrated to activate the C(acyl)–O bond of alkyl esters, which makes it difficult to perform informed screening when a challenging reaction needs optimization. We demonstrate that Ni catalysts bearing diverse NHC, phosphine, and nitrogen-containing ligands can all be used to activate methyl esters and enable their use in direct amide bond formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.