Abstract

DNA methylation is an epigenetic mechanism that acts on cytosine residues. The methyl-CpG-binding domain proteins (MBD) are involved in the recognition of methyl-cytosines by activating a signaling cascade that induces the formation of heterochromatin or euchromatin, thereby regulating gene expression. In this study, we analyzed the evolution and conservation of MBD proteins in plants. First, we performed a genome-wide identification and analysis of the MBD family in common bean and soybean, since they have experienced one and two whole-genome duplication events, respectively. We found one pair of MBD paralogs in soybean (GmMBD2) has subfunctionalized after their recent divergence, which was corroborated with their expression profile. Phylogenetic analysis revealed that classes of MBD proteins clustered with human MBD. Interestingly, the MBD9 may have emerged after the hexaploidization event in eudicots. We found that plants and humans share a great similarity in MBDs’ binding affinity in the mCpG context. MBD2 and MBD4 from different plant species have the conserved four amino acid residues -Arg (R), Asp (D), Tyr (Y) and Arg (R)- reported to be responsible for MBD-binding in the mCpG. However, MBD8, MBD9, MBD10, and MBD11 underwent substitutions in these residues, suggesting the non-interaction in the mCpG context, but a heterochromatin association as MBD5 and MBD6 from human. This study represents the first genome-wide analysis of the MBD gene family in eurosids I - soybean and common bean. The data presented here contribute towards understanding the evolution of MBDs proteins in plants and their specific binding affinity on mCpG site.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call