Abstract

There is a growing demand for the development of functional wound dressings enriched with bioactive natural compounds to improve the quality of life of the population by accelerating the healing process of chronic wounds. In this regard, a functional composite film of okra mucilage (OM) and methylcellulose (MC) incorporated with Hypericum perforatum oil (Hp) and gentamicin (G) was prepared and characterized as a wound dressing. Increasing Hp resulted in improved film properties with a more porous structure, higher WVTR, and lower surface hydrophobicity. Furthermore, incorporating Hp into OM:MC films led to increased elongation at the break while reducing the tensile strength of the films. The highest values of total antioxidant capacity (1.09–1.16 mM trolox equivalent) and total phenolic content (13.76–16.94 μg GA equivalent mL−1) were measured in the composite films containing the highest Hp concentration (1.5 %). In addition, OM:MC/HpG composite films exhibited significant antibacterial activity against both E. coli and S. aureus and prevented the transmission of these bacteria through the films. Hp incorporation reduced the cytotoxic effects of OM:MC films on BJ cells and increased the wound closure rate in vitro. In conclusion, the developed OM:MC/HpG composite film can be a promising candidate as a novel wound dressing with its superior properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call