Abstract

We demonstrate a hybrid Schottky junction solar cell based on methyl/allyl groups terminated silicon nanowire arrays (SiNWs) and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) with a power conversion efficiency (PCE) of 10.2%. The methyl/allyl organic monolayer on silicon can act as an excellent passivation layer for suppressing surface charge recombination, which is characterized by grazing angle attenuated total reflectance Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy measurements. The transient and steady electric output characteristics measurements indicate that the density of trap states of SiNWs are dramatically suppressed by methyl/allyl surface modification. In addition, the device based on methyl/allyl passivated SiNWs exhibits improved stable electrical output over those based on either methyl or allyl passivated ones. The improved PCE and good stability of the device are ascribed to efficient functionalization of the SiNW surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call