Abstract

Introducing methoxy substituent into triphenylamine-acetophenone based donor-π-acceptor fluorophore, 3-(4-(diphenylamino)phenyl)-1-phenylprop-2-en-1-one (1), produced strong solvatofluorochromism including white light emission, fluorescent polymorphs and mechano-responsive fluorescence switching. The unsubstituted and methoxy substituted compounds displayed strong solvent polarity mediated tunable emission in the solution. Interestingly, 3-(4-(diphenylamino)phenyl)-1-(4-methoxyphenyl)prop-2-en-1-one (2) and 3-(4-(diphenylamino)-2-methoxyphenyl)-1-(4-methoxyphenyl)prop-2-en-1-one (3) showed single molecule white light emission in DMSO and ethanol, respectively. 1-3 exhibited strong green/yellow fluorescence in the solid-state (Quantum yield (Φf) = 10 to 23%). 2 produced fluorescent polymorphs (green (2-G) and yellow (2-Y). Single crystal structural analysis revealed that donor and acceptor phenyl units adopted coplanar conformation in 2-G and 3 whereas twisted molecular conformation in 1 and 2-Y. Further, 2-G exhibited π…π interactions facilitated isolated dimers whereas 2-Y showed well separated molecules in the crystal lattice. Aggregation induced emission (AIE) studies showed morphological transformation induced fluorescence tuning for 2. The intramolecular charge transfer (ICT) from TPA to acetophenone was confirmed by computational studies. Mechanofluorochromic (MFC) studies of 1 showed only slight reduction of intensity without modulating fluorescence wavelength significantly but 2 and 3 exhibited visible emissive colour change from yellow to green and vice versa by crushing and heating. Both 2 and 3 also exhibited self-reversible fluorescence switching that was confirmed by PXRD pattern. Thus, methoxy group introduction resulted in obtaining white light emitting fluorescence molecules in the solution state and self-reversible fluorescence switching materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call