Abstract

Two new analogues of a popular host material, meta-bis(N-carbazolyl)phenylene (mCP), bearing either methoxy- (mCP-OMe) or tert-butyl (mCP-t-Bu) substituents at C-3 and C-6 positions of carbazole moieties were synthesized and characterized. These materials exhibit higher glass-transition temperatures (79 and 145 °C) than mCP (67 °C). They show reversibility upon electrochemical oxidation while preserving high enough triplet energy levels (2.86 and 2.97 eV). The vacuum-deposited layer of mCP-t-Bu showed hole mobility of 8 × 10−3 cm2V−1s−1 at the electric field of 1.2 × 105 Vcm−1. This value is more than by one order of magnitude higher than that of mCP. The new compounds were tested as hosts for commercial emitters: blue phosphor, bis[2-(4,6-difluorophenyl)pyridinato-C2,N](picolinato)iridium(III) (FIrpic), green and blue thermally-activated delayed fluorescence (TADF) emitters 1,2,3,5-tetrakis(9-carbazolyl)-4,6-dicyanobenzene (4CzIPN) and bis[4-(9,9-dimethyl-9,10-dihydroacridin-10-yl)phenyl]sulfone (DMAC-DPS). Blue phosphorescent OLED based on mCP-t-Bu as the host showed up to 22.0% external quantum efficiency. When doping 4CzIPN into mCP-OMe host, a broad emission with peaks at 388, 514, and 572 nm was observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.