Abstract

Chemotherapy often induces intestinal mucositis, which is associated with an increase in intestinal permeability; however, underlying mechanisms remain incompletely understood. Thus, we aimed to study the regulation of 3 tight junction (TJ) proteins, claudin-1, occludin, and zonula occludens-1, after anticancer treatment. Methotrexate (MTX) was subcutaneously injected for 3 consecutive days in Sprague-Dawley rats to induce intestinal mucositis and was applied on Caco-2 cell monolayers. TJ protein expression and cellular distribution were studied by Western blot and microscopy, respectively. In Caco-2 cells, the paracellular permeability was evaluated by both transepithelial electrical resistance and flux of fluorescein isothiocyanate-dextran marker. Cytokine production and signaling pathways were also assessed. In MTX-treated rats, the cellular distribution of the 3 TJ proteins was altered and claudin-1 and occludin expression was reduced during the acute phase of mucositis compared with controls. During the recovery phase, these parameters were restored. In vitro, MTX treatment led to an increase in proinflammatory cytokine production at the apical side but did not affect Caco-2 cell apoptosis and necrosis. Increase in paracellular permeability was associated with altered occludin and zonula occludens-1 expression and cellular distribution. All of these alterations were prevented by MEK1 and 2, JNK, and NF-κB inhibitors. MTX treatment induced an increase in intestinal permeability partially related to alteration of TJs protein expression and cellular distribution that may be mediated by MAPK and NF-κB pathways. These are potential targets to limit the adverse effects of chemotherapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call