Abstract

The first layer of active defense in plants is based on the perception of pathogen-associated molecular patterns (PAMPs) leading to PAMP-triggered immunity (PTI). PTI is increasingly being investigated in crop plants, where it may have potential to provide durable disease resistance in the field. Limiting this work, however, is an absence of reliable bioassays to investigate PAMP responses in some species. Here, we present a series of methods to investigate PTI in Brassica napus. The assays allow measuring early responses such as the oxidative burst, mitogen-activated protein kinase phosphorylation, and PAMP-induced marker gene expression. Illumina-based RNA sequencing analysis produced a genome-wide survey of transcriptional changes upon PAMP treatment seen in both the A and C genomes of the allotetraploid B. napus. Later responses characterized include callose deposition and lignification at the cell wall, seedling growth inhibition, and PAMP-induced resistance to Pseudomonas syringae and Botrytis cinerea. Furthermore, using these assays, we demonstrated substantial variation in PAMP responses within a collection of diverse B. napus cultivars. The assays reported here could have widespread application in B. napus breeding and mapping programs to improve selection for broad-spectrum disease resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.