Abstract

The tripping of fully developed turbulent plane channel flow was studied at low Reynolds number, yielding unique flow properties independent of the initial conditions. The LDA measuring technique was used to obtain reliable mean velocities, rms values of turbulent velocity fluctuations and skewness and flatness factors over the entire cross-section with emphasis on the near-wall region. The experimental results were compared with the data obtained from direct numerical simulations available in the literature. The analysis of the data indicates the important role of the upstream conditions on the flow development. It is shown that the fully developed turbulent state at low Reynolds number can be reached only by significant tripping of the flow at the inlet of the channel. Effects related to the finite size of the LDA measuring control volume and an inaccuracy in the estimation of the wall shear stress from near-wall velocity measurements are discussed in detail since these can yield systematic discrepancies between the measured and simulated results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.