Abstract

On-line determination of the oxygen isotopic composition (delta(18)O value) in organic and inorganic samples is commonly performed using a thermal conversion elemental analyzer (TC-EA) linked to a continuous flow isotope ratio mass spectrometry (IRMS) system. Accurate delta(18)O analysis of N-containing compounds (like nitrates) by TC-EA-IRMS may be complicated because of interference of the N(2) peak on the m/z 30 signal of the CO peak. In this study we evaluated the effectiveness of two methods to overcome this interference which do not require any hardware modifications of standard TC-EA-IRMS systems. These methods were (1) reducing the amount of N(2) introduced into the ion source through He dilution of the N(2) peak and (2) an improved background correction on the CO m/z 30 sample peak integration. Our results show that He dilution is as effective as diverting the N(2) peak in order to eliminate this interference. We conclude that the He-dilution technique is a viable method for the delta(18)O analysis of nitrates and other N-containing samples (which are not routinely measured using He dilution) using TC-EA-IRMS, since it can easily be programmed in the standard software of IRMS systems. With the He-dilution technique delta(18)O values of the nitrate isotope standards USGS34, IAEA-N3 and USGS35 were measured using the shortest possible traceability chain to the VSMOW-SLAP scale, and the results were -28.1 +/- 0.1 per thousand, +25.5 +/- 0.1 per thousand and +57.5 +/- 0.2 per thousand, respectively. An improved background correction was also an effective method, but required manual correction of the raw data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call