Abstract

Nucleic acid strands can be synthesized into various nucleic acid-based nanomaterials (NANs) through strict base pairing. The self-assembled NANs are programmable, intelligent, biocompatible, non-immunogenic, and noncytotoxic. With the rapid development of nanotechnology, the application of NANs in the biomedical fields, such as drug delivery and biological sensing, has attracted wide attention. However, the stability of NANs is often affected by the cation concentrations, enzymatic degradation, and organic solvents. This susceptibility to degradation is one of the most important factors that have restricted the application of NANs. NANs can be denatured or degraded under conditions of low cation concentrations, enzymatic presence, and organic solvents. To deal with this issue, a lot of methods have been attempted to improve the stability of NANs, including artificial nucleic acids, modification with specific groups, encapsulation with protective structures, etc. In this review, we summarized the relevant methods to have a deeper understanding of the stability of NANs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.