Abstract

Autonomous and autonomic systems have started to develop machine learning (ML) methods for prognostics and health management (PHM) directly at the platform level. Remaining-useful-life (RUL) estimation, also known as Time-to-failure (TTF) estimation, using streaming sensor data is critical for PHM as it can help to decide and schedule appropriate courses of action (COAs). This work casts the RUL-estimation problem as a classification problem over a finite-time horizon. Rather than using a winner-take-all method to develop a RUL estimator, we propose a top-K estimator that considers the RUL values corresponding to the K-largest probabilities yielded by the classifier to develop our estimator. The top-K RUL values can be used to drive the execution of conservative or aggressive PHM strategies, or be tracked over time to develop robust RUL estimators that leverage the history of RUL estimates. The performance of the proposed RUL estimators is illustrated on a dataset from NASA’s Prognostics Center of Excellence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.