Abstract

Lignin is readily available as a by-product from the pulp and paper industry. It is considered to be a promising substitute for phenol in phenol-formaldehyde (PF) resin synthesis, given the increasing concerns of the shortage of fossil resources and the environmental impact from petroleum-based products. One hurdle that prevents the commercial utilization of lignin is its low reactivity due to its chemical structure. Many efforts have been made to improve its reactivity by modification and/or depolymerization of lignin molecules. Methylolation and phenolation are the two most studied modification approaches aimed at introducing reactive functional groups to lignin molecules. Modified lignin from these two methods could partially replace phenol in PF resin synthesis. Demethylation of lignin could effectively increase the reactivity of lignin by forming catechol moieties in the lignin macromolecule. Other methods, including reduction, oxidation, and hydrolysis, have also been studied to improve the reactivity of lignin as well as to produce phenolic compounds from lignin. Most current methods of lignin modification are not economically attractive. One can expect that efforts will be continued, aimed at improving the utilization of lignin for value-added products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call