Abstract
Monitoring body temperature and energy expenditure in freely-moving laboratory mice remains a powerful methodology used widely across a variety of disciplines–including circadian biology, sleep research, metabolic phenotyping, and the study of body temperature regulation. Some of the most pronounced changes in body temperature are observed when small heterothermic species reduce their body temperature during daily torpor. Daily torpor is an energy saving strategy characterized by dramatic reductions in body temperature employed by mice and other species when challenged to meet energetic demands. Typical measurements used to describe daily torpor are the measurement of core body temperature and energy expenditure. These approaches can have drawbacks and developing alternatives for these techniques provides options that can be beneficial both from an animal-welfare and study-complexity perspective. First, this paper presents and assesses a method to estimate core body temperature based on measurements of subcutaneous body temperature, and second, a separate approach to better estimate energy expenditure during daily torpor based on core body temperature. Third, the effects of light exposure during the habitual dark phase and sleep deprivation during the light period on body temperature dynamics were tested preliminary in fed and fasted mice. Together, the here-published approaches and datasets can be used in the future to assess body temperature and metabolism in freely-moving laboratory mice.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.