Abstract
Many surveys are performed using non-probability methods such as web surveys, social networks surveys, or opt-in panels. The estimates made from these data sources are usually biased and must be adjusted to make them representative of the target population. Techniques to mitigate this selection bias in non-probability samples often involve calibration, propensity score adjustment, or statistical matching. In this article, we consider the problem of estimating the finite population distribution function in the context of non-probability surveys and show how some methodologies formulated for linear parameters can be adapted to this functional parameter, both theoretically and empirically, thus enhancing the accuracy and efficiency of the estimates made.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.