Abstract

New orthopedic implants for focal cartilage defects replace only a portion of the articulating joint and wear against the opposing cartilage surface. The objective of this study was to investigate different methodologies to quantify cartilage wear for future use in screening potential implant materials and finishes. In determining the optimal test parameters, two different cartilage surface geometries were compared: smaller specimens had a flat surface, while larger ones made contact in the center but not at the edge owing to the curvature of the articulating surface. The cartilage wear of the two geometries was compared using three different techniques: the collagen worn from the cartilage specimens was assessed with a modified wear factor, the surface damage was made visible with Indian ink and was quantified, and the change in surface roughness was measured. To interpret the experimental results, maximum shear stresses were evaluated with sliding contact finite element models. Although the modified wear factor was considered to be the most accurate assessment of cartilage wear, surface damage was an effective, inexpensive, and quick technique to evaluate potential implant materials. Flat specimens showed excessive wear at the edges owing to a non-physiologic stress concentration, while the larger specimens wore more uniformly across the surface. These results will be applied to future studies evaluating prospective implant materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.