Abstract
Let λ={λ k n } be a triangular method of summation,f e Lp (1 ≤ p ≤ ∞), $$U_n (f,x,\lambda ) = \frac{{a_0 }}{2} + \sum _{k = 1}^n \lambda _k^n (a_k \cos kx + b_k \sin kx).$$ Consideration is given to the problem of estimating the deviations ∥f − Un (f, λ) ∥ Lp in terms of a best approximation En (f) Lp in abstract form (for a sequence of projectors in a Banach space). Various generalizations of known inequalities are obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Notes of the Academy of Sciences of the USSR
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.