Abstract

In this article we survey methods of dealing with the following problem: A financial agent is trying to hedge a claim C, without having enough initial capital to perform a perfect (super) replication. In particular, we describe results for minimizing the expected loss of hedging the claim C both in complete and incomplete continuous-time financial market models, and for maximizing the probability of perfect hedge in complete markets and markets with partial information. In these cases, the optimal strategy is in the form of a binary option on C, depending on the Radon-Nikodym derivative of the equivalent martingale measure which is optimal for a corresponding dual problem. We also present results on dynamic measures for the risk associated with the liability C, defined as the supremum over different scenarios of the minimal expected loss of hedging C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.