Abstract
We study the problem of reconstruction of high-energy cosmic rays mass composition from the experimental data of extensive air showers. We develop several machine learning methods for the reconstruction of energy spectra of separate primary nuclei at energies 1–100 PeV, using the public data and Monte-Carlo simulations of the KASCADE experiment from the KCDC platform. We estimate the uncertainties of our methods, including the unfolding procedure, and show that the overall accuracy exceeds that of the method used in the original studies of the KASCADE experiment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.