Abstract

Purpose. To demonstrate feasibility of the proposed integrated optimization of various MTS parameters to reduce capital investments as well as decrease any operational and maintenance expense. This will make use of MTS reasonable. At present, the Maglev Transport Systems (MTS) for High-Speed Ground Transportation (HSGT) almost do not apply. Significant capital investments, high operational and maintenance costs are the main reasons why Maglev Transport Systems (MTS) are hardly currently used for the High-Speed Ground Transportation (HSGT). Therefore, this article justifies use of Theory of Complex Optimization of Transport (TCOT), developed by one of the co-authors, to reduce MTS costs. Methodology. According to TCOT, authors developed an abstract model of the generalized transport system (AMSTG). This model mathematically determines the optimal balance between all components of the system and thus provides the ultimate adaptation of any transport systems to the conditions of its application. To identify areas for effective use of MTS, by TCOT, the authors developed a dynamic model of distribution and expansion of spheres of effective use of transport systems (DMRRSEPTS). Based on this model, the most efficient transport system was selected for each individual track. The main estimated criterion at determination of efficiency of application of MTS is the size of the specific transportation tariff received from calculation of payback of total given expenses to a standard payback period or term of granting the credit. Findings. The completed multiple calculations of four types of MTS: TRANSRAPID, MLX01, TRANSMAG and TRANSPROGRESS demonstrated efficiency of the integrated optimization of the parameters of such systems. This research made possible expending the scope of effective usage of MTS in about 2 times. The achieved results were presented at many international conferences in Germany, Switzerland, United States, China, Ukraine, etc. Using MTS as an example, this research proved the sustainability of the proposed integrated optimization parameters of transport systems. This approach could be applied not only for MTS, but also for other transport systems. Originality. The bases of the complex optimization of transport presented are the new system of universal scientific methods and approaches that ensure high accuracy and authenticity of calculations with the simulation of transport systems and transport networks taking into account the dynamics of their development. Practical value. The development of the theoretical and technological bases of conducting the complex optimization of transport makes it possible to create the scientific tool, which ensures the fulfillment of the automated simulation and calculating of technical and economic structure and technology of the work of different objects of transport, including its infrastructure.

Highlights

  • Согласно теории комплексной оптимизации транспорта (ТКОТ) была разработана абстрактная модель обобщенной транспортной системы (АМОТС), которая математически определяет максимальное равновесие между всеми компонентами системы и тем самым обеспечивает предельную адаптацию любой транспортной системы к условиям ее применения

  • According to Theory of Complex Optimization of Transport (TCOT), authors developed an abstract model of the generalized transport system (AMSTG)

  • To identify areas for effective use of Maglev Transport Systems (MTS), by TCOT, the authors developed a dynamic model of distribution and expansion of spheres of effective use of transport systems (DMRRSEPTS)

Read more

Summary

МЕТОДЫ КОМПЛЕКСНОЙ ОПТИМИЗАЦИИ МАГНИТОЛЕВИТИРУЮЩИХ ТРАНСПОРТНЫХ СИСТЕМ

Выполненные многовариантные расчеты четырех типов МТС: TRANSRAPID, MLX01, ТРАНСМАГ и ТРАНСПРОГРЕСС показали эффективность комплексной оптимизации параметров таких систем. В целях выбора правильных подходов для проведения комплексной оптимизации МТС изначально была исследована зависимость их затрат от максимальной скорости поезда и конфигурации его состава. Результаты моделирования виртуальных трасс MLX01 и TRANSRAPID показали, что при коротких расстояниях между остановками поезд не может достигнуть максимальной технической скорости Что при фиксированном объеме годовых перевозок 16 млн пассажиров в год величина перевозочного тарифа после комплексной оптимизации ТРАНСМАГ примерно в 2,11 раза ниже тарифа, действовавшего до ее оптимизации Полученных в результате комплексной оптимизации TRANSRAPID, показал, что при одновременном улучшении скоростных показателей была повышена его экономическая эффективность в сравнении с проектными данными трасс При осуществлении комплексной оптимизации MLX01 и TRANSRAPID была выявлена зависимость их затрат от среднего расстояния между остановками на трассе. Исходя из этого можно сделать вывод, что наиболее эффективным будет применение MLX01 и TRANSRAPID на трассах со средним расстоянием между остановками от 10 до 15 км, что соответствует в основном региональному и пригородному сообщению

Определение границы между сферами эффективного применения
Руководящий уклон трассы
Название железнодорожной транспортной системы
Высокоскоростной железнодорожный поезд
Научная новизна и практическая значимость
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
МЕТОДИ КОМПЛЕКСНОЇ ОПТИМІЗАЦІЇ МАГНІТОЛЕВІТУЮЧИХ ТРАНСПОРТНИХ СИСТЕМ
OF INTEGRATED OPTIMIZATION MAGLEV TRANSPORT SYSTEMS

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.