Abstract
This work represents the investigations for decreasing acceleration gap breakdown probability of plasma source of electrons SOLO, with grid stabilization of the boundaries of the arc cathode plasma. We increased the distance to the treated target, bent the transportation channel of the electron beam, created additional plasma in the anode space, and increased the beam front. The effect of the above measures on the breakdown probability when the target is exposed of a low-energy electron beam with a power density of up to 0.5 MW/cm2 with a diameter of 2.5 cm was investigated separately. Beam deflection is most effective at relatively long pulse durations of 150 μs and accelerating voltage of 20 kV, rather than a lower one. It was possible to double the maximum power for the same beam transport length applied to a low-melting target. Preionization in the anode proved to be effective for relatively short beams of 15 μs duration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.