Abstract
In this paper, we review the quasi Lindley distribution and established its quantile function. A simulation study is conducted to examine the bias and mean square error of the parameter estimates of the distribution through the method of moment estimation and the maximum likelihood estimation. Result obtained shows that the method of maximum likelihood is a better choice of estimation method for the parameters of the quasi Lindley distribution. Finally, an applicability of the quasi Lindley disttribution to a waiting time data set suggests that the distribution demonstrates superiority over the power Lindley distribution, Sushila distribution and the classical oneparameter Lindley distribution in terms of the maximized loglikelihood, the Akaike information criterion, the Kolmogorov-Smirnov and Cramer von Mises test statistic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.