Abstract
We present a description of the process of estimating surface fluxes of CO 2, latent heat and sensible heat from estimates of fractions of satellite-based land cover types in the flux footprint. The study is conducted at two heterogeneous sites in the boreal forest of Central Canada. Using a Twin Otter aircraft, fluxes were measured in a grid pattern during three Intensive Field Campaigns (IFCs) and Landsat thematic mapper data were used for land cover classification. Using a footprint function developed from tracer gas release experiments in the boreal forest, the fractions of cover types within the footprint were determined, and used in a regression analysis against observed fluxes. The results showed that the surface cover types within the flux footprint accounted for about 90% of the variations in the measured airborne fluxes of CO 2, sensible heat and latent heat, at two different study sites. The attempted validation of the regression models, by comparing flux estimates over regional transects outside the grid area for which the regression model had been developed or over site-specific runs within the grid area against observed fluxes, based on fractional distributions of surface cover types, were encouraging. They indicate the potential for extrapolating models developed for a given location to another location, based simply on the fractions of cover types, at least for similar land cover types.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.