Abstract
AbstractThe structure of thin, wavy falling films was studied to evaluate whether the random‐appearing wave structure is a result of deterministic chaos or a purely stochastic process. The time‐varying film thickness was obtained at different spatial locations near the point of wave inception for flow rates in the range of Re=3–10. Under all conditions the wave structure was aperiodic in nature and displayed none of the known transitions to chaos. However, the power spectra followed an exponential decay law at high frequencies that is characteristic of chaotic systems. The estimated attractor dimension, used to characterize the complexity of a chaotic system, was much higher than those of known model chaotic systems. It is demonstrated that these high values could be explained due to small levels of noise present in experimental situations. Since experimental data are seldom noise free, a basic limitation in applying these methods to experimental measurements is demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.