Abstract
In the present paper, we propose a wavelet-based method of describing variations in the Earth’s magnetic field, such as the horizontal component of the geomagnetic field, in addition to methods for evaluating changes in the energy characteristics of the field and for isolating the periods of increased geomagnetic activity. Based on a combination of multiresolution wavelet decompositions with neural networks, we propose a method of approximation of the cosmic ray time course and the allocation of anomalous variations (Forbush effects) that occur during periods of high solar activity. During the realization of the method, an algorithm was created for selecting the level of the wavelet decomposition and adaptive construction of the neural network. By using the proposed methods, we performed a joint analysis of the geomagnetic field and cosmic rays during periods of strong magnetic storms. The strongest geomagnetic field perturbations were observed in periods of abnormal changes in cosmic ray level. Assessment of the intensity of geomagnetic disturbances on the eve of and during magnetic storm development allowed us to highlight local increases in intensity of the geomagnetic field occurring at different frequency ranges prior to the development of the storm’s main phase. Implementation of the proposed method with theoretical tools in combination with other methods will improve the estimation accuracy of the geomagnetic field state during space weather forecasting.
Highlights
In the present paper, we propose a wavelet-based method of describing variations in the Earth’s magnetic field, such as the horizontal component of the geomagnetic field, in addition to methods for evaluating changes in the energy characteristics of the field and for isolating the periods of increased geomagnetic activity
At the Athens station, a short Forbush effect with rapid recovery peaked at 20:00 UT, in which the neural network error increased in threefold in comparison with the quiet period
We proposed a model of geomagnetic field variations that allows us to describe the tranquil dynamics and disturbances occurring in periods of increased geomagnetic activity
Summary
We propose a wavelet-based method of describing variations in the Earth’s magnetic field, such as the horizontal component of the geomagnetic field, in addition to methods for evaluating changes in the energy characteristics of the field and for isolating the periods of increased geomagnetic activity. The authors combine multiscale wavelet transforms and neural networks to develop a technique for approximating the time variation of cosmic rays and discovering anomalous changes connected with increased solar activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.