Abstract
Objectives. To examine the general principles and recent advances in the synthesis of high-purity and high-homogeneity barium titanate powders in the manufacture of electronic components.Results. The main publications regarding the synthesis of barium titanate powder, including the works of recent years, were analyzed. The technological advantages and disadvantages of various synthesis methods were identified. Groups of methods based on solid-state interaction of reagents and methods of “wet chemistry” were also considered. The possibilities of producing barium titanate particles of non-isometric shapes for creating textured ceramics were discussed separately.Conclusions. Barium titanate is a well-known ferroelectric with a high dielectric constant and low dielectric loss. It is used as a component in ceramic electronic products, for example, capacitors, memory devices, optoelectronic devices, and piezoelectric transducers. The possibilities of producing functional ceramics based on barium titanate powder largely depend on its state and morphological characteristics, determined during the synthesis stage. The most important factors affecting the functional characteristics of ceramics are the purity and morphology of the powder raw materials used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.